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Abstract

In this paper, a new computational technique is presented based on the eXtended Finite Element Method (X-FEM) in
pressure-sensitive plasticity of powder compaction considering frictional contact. In X-FEM, the need for mesh adaption
to discontinuity interface is neglected and the process is accomplished by partitioning the domain with some triangular
sub-elements whose Gauss points are used for integration of the domain of the elements. The technique is applied by
employing additional functions, which are added to approximate the displacement field of the elements located on the
interface. The double-surface cap plasticity model is employed within the X-FEM framework in numerical simulation
of powder material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space
between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hard-
ening rule. The frictional behavior of contact between two bodies is modeled by using the X-FEM technique and applying
the Heaviside enrichment function. The application of X-FEM technique in simulation of pressure-sensitive material is
presented in an incremental manner and the role of sub-elements in simulation of contact treatment is demonstrated.
Finally, several numerical examples are analyzed with special reference to plasticity forming of powder compaction.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In powder compaction simulation, the note for mesh adaption in different stages of process is of great
importance. The need for mesh conforming to the shape of the boundary of mould must be preserved at each
stage of compaction. The requirement of mesh adaptation in this process may consume high expenses of
capacity and time in computer simulation. Thus, it is necessary to perform an innovative procedure to remove
the limitation of the mesh conforming to the boundary conditions. One of the methods that has been success-
fully employed in modeling cracks and inhomogeneities is the eXtended Finite Element Method (X-FEM), in
which its application is widely spread in the problems with different boundary conditions. In X-FEM, the need
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for remeshing and mesh adaption can be neglected if discontinuity or crack propagation happens. In this tech-
nique, the standard displacement based approximation is enriched by incorporating discontinuous fields
through a partition of unity method (Melenk and Babuska, 1996). Mesh adaption process is therefore substi-
tuted by partitioning the domain with some triangular sub-elements whose Gauss points are used for integra-
tion of the domain of elements. The important advantage of the method is that the number of degrees of
freedom remains constant and thus, we do not need to solve a greater equation. In this case, additional func-
tions are used to enrich the discontinuous displacement fields of the domain, which compensate for this
discontinuity.

The most application of X-FEM technique has been reported in modeling crack growth and crack propa-
gation. The method was first developed by Dolbow (1999), Belytschko and Black (1999) and Moes et al. (1999)
to model cracks, voids and inhomogeneities. They proposed appropriate additional terms in finite element
approximation based on the partition of unity method (Melenk and Babuska, 1996). This allows for the entire
crack geometry to be modeled independently of the mesh, and completely avoids the need to remesh as the
crack grows. A methodology that constructs the enriched approximation based on the interaction of the dis-
continuous geometric features with the mesh was developed by Daux et al. (2000) in modeling crack discon-
tinuities. The implementation of the X-FEM into three-dimensional crack modeling was presented by
Sukumar et al. (2000) using the notion of partition of unity. Belytschko et al. (2001) developed a technique
in modeling arbitrary discontinuities in finite elements. In this method, the discontinuous approximation
was constructed in terms of a signed distance functions and the level sets were used to update the position
of the discontinuities. Dolbow et al. (2001) proposed special treatments in numerical simulation of crack
growth, in which the frictional contact was modeled in the framework of X-FEM technique and an iterative
procedure, called ‘LATIN method’ was applied in the analysis of contact faces of crack. In this method, the
nonlinear behavior of contact was incorporated into the linear global equations by an iterative scheme to
resolve the nonlinear boundary value problem. The combination of this method with X-FEM was enhanced
the solution procedure of contact analysis, efficiently. An algorithm which couples the level set method with
the extended finite element method was proposed by Stolarska et al. (2001). They applied a discontinuous
function based on the Heaviside step function in modeling two-dimensional linear elastic crack-tip displace-
ment fields.

An enriched finite element method for the multi-dimensional Stefan problems was presented by Chessa
et al. (2002). In this method, the standard finite element basis was enriched with a discontinuity in the deriv-
ative of the temperature normal to the interface, in which the phase interface was evolved without reme-
shing, or the use of artificial heat capacity techniques. A hybrid numerical method was proposed by Ji
et al. (2002) for modeling the evolution of sharp phase interfaces on fixed grids, with reference to solidifica-
tion problems. They employed the enrichment strategies of X-FEM to represent the jump in the temperature
gradient that governs the velocity of the phase boundary. Moes and Belytschko (2002) proposed the X-FEM
technique in modeling growth of cohesive cracks by eliminating the evaluation of stress intensity factors at
the tip of the cohesive zones. The method was applied by Patzdk and Jirasek (2003) for the computational
resolution of highly localized strains in narrow damage process zones of brittle materials. A methodology for
modeling crack discontinuities was presented by Sukumar and Prevost (2003) with implementation of X-
FEM in isotropic and biomaterial media. The technique was implemented into three-dimensional fatigue
crack propagation simulation of multiple coplanar cracks by Sukumar et al. (2003) and Chopp and Sukumar
(2003). They combined the extended finite element method to the fast marching method using the partition
of unity method to model the entire crack geometry, including one or more cracks, by a single signed dis-
tance (level set) function. The X-FEM is applied in two-phase flow problems by Chessa and Belytschko
(2003), in which the interface can move arbitrarily through the mesh without remeshing and the discontinu-
ity in the velocity gradient at the interface is modeled by a local partition of unity. An enriched finite element
method with arbitrary discontinuities in space—time was presented by Chessa and Belytschko (2004). They
modeled discontinuities by the X-FEM with a local partition of unity enrichment to introduce discontinuities
along a moving hyper-surface.

The application of X-FEM in plasticity behavior of material is a pristine field. The aim of present study is
to implement the method in pressure-sensitive plasticity material, such as compaction forming of powder, as
the necessity of remeshing can be observed in most conditions. Powder forming considers the methods of
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producing commercial products from metallic powders by pressure. The compaction of powders shows three
complex densification mechanisms. Firstly, at low pressure, particle sliding occurs leading to particle
rearrangement. The second stage involves both elastic and plastic deformation of the particles via their contact
areas leading to geometric hardening (i.e., plastic deformation and void closure). Lastly, at very high pressure,
the flow resistance of the material increases rapidly due to material strain hardening. In order to perform such
complex mechanisms, the process of compaction must be drawn into a mathematical formulation with the
knowledge of material behavior. Constitutive modeling of powder is therefore one of the main ingredients
of successful quantitative solution possibilities, which can reproduce powder material behavior under compli-
cated loading conditions.

A number of constitutive models for the cold compaction of metal powders have been proposed during last
three decades, including: microscopic models (Fleck et al., 1992, 1995; Ransing et al., 2000; McMeeking et al.,
2001), flow formulations (Lewis et al., 1993) and solid mechanics models (Brown and Weber, 1988; Chenot
et al., 1990; Brekelmans et al., 1991; Haggblad and Oldenburg, 1994; Lewis and Khoei, 1998). A visco-plastic
model was developed by Storakers et al. (1999) for the densification of spherical powders. Redanz (2001) pro-
posed two different rate-independent elasto-plastic models based on the combined Fleck et al. (1992)-Gurson
(1977) model and a modified version of the Fleck (1995) model to simulate the cup-shaped powder compo-
nent. The mixed yield functions were employed by Kim and Cho (2001) in terms of the volume fractions
and the fraction of contact of soft and hard powders. Cedergren et al. (2002) employed two different porous
visco-plastic material models based on the combined Fleck et al. (1992)-Gurson (1977) model and the Shima
and Oyane (1976) model. A density-dependent endochronic theory was developed by Khoei et al. (2003) and
Khoei and Bakhshiani (2004) based on coupling between deviatoric and hydrostatic behavior in finite strain
plasticity to simulate the compaction process of powder material.

The experimental results of Watson and Wert (1993) and Brown and Abou-Chedid (1994) demonstrated
that the constitutive modeling of geological and frictional materials can be utilized to construct the suitable
phenomenological constitutive models which capture the major features of the response of initially loose pow-
ders to the complex deformation processing histories encountered in the manufacture of engineering compo-
nents by powder metallurgy techniques. In particular, they suggested that a ‘two-mechanism-model’, such as
Drucker-Prager or Mohr-Coulomb and elliptical cap models, which are widely used for geological materials
and exhibit pressure dependent behavior can be useful for modeling the response of powder materials. These
models consist of two yield surfaces; a ‘distortion surface’ and a ‘consolidation’ or ‘cap’ surface, which has an
elliptical shape. The distortion surface controls the ultimate shear strength of material and the cap surface cap-
tures the hardening behavior of material under compression.

The cap plasticity model used in the modeling of geological and frictional materials, is therefore employed
to capture the major features of the response of initially loose metal powders to complex deformation histories
which are encountered in the manufacture of engineering components by powder metallurgy techniques. The
cone-cap model based on a density-dependent Drucker—Prager yield surface and a non-centered ellipse is
developed by Aydin et al. (1996), Khoei and Lewis (1998, 1999), Brandt and Nilsson (1999), Gu et al.
(2001) and Lewis and Khoei (2001). In this study, a cone-cap density-dependent plasticity model is developed
based on a combination of a convex yield surface consisting of a failure envelope and a hardening elliptical cap
for nonlinear behavior of powder materials in the concept of the generalized plasticity formulation. A general
algorithm for the cap plasticity from the viewpoint of efficient numerical modeling is presented. The cap plas-
ticity together with frictional contact algorithm are performed within the framework of extended finite element
method, in order to predict the non-uniform relative density distribution during powder-die pressing. The
discontinuity between tool and powder is modeled using the enrichment functions, whose geometry is not
dependent on the topology of the mesh. The Heaviside enrichment function is implemented in simulation
of powder-die contact surface and the level set function is used for enriching the discontinuities of material
properties.

The plan of the paper is as follows: in Section 2, an overview of the extended finite element method is pre-
sented with an introduction to the partition of unity method and enrichment of displacement field. In Section
3, the governing equations of nonlinear elasto-plasticity is extracted in the concept of X-FEM. The computa-
tional algorithm of frictional contact in X-FEM using an iterative procedure of LATIN method is presented in
Section 4. In Section 5, the double-surface cap plasticity is developed for description of powder behavior. The
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derivation of constitutive elasto-plastic matrix and its components, and parameter determination of double-
surface plasticity are demonstrated in this section. In Section 6, numerical simulation of several complicated
die geometries are presented. Finally, some concluding remarks are given in Section 7.

2. The extended finite element method

The enriched finite element methods are powerful and accurate approaches to model discontinuities with-
out considering their geometries. In these methods, the discontinuities are not considered in mesh generation
operation and special functions which depend on the nature of discontinuity are included into finite element
approximation. The extended finite element method is one of the most recent approaches, which has been
extensively employed in numerical modeling of crack growth. The aim of this method is to simulate the dis-
continuity with minimum enrichment. In X-FEM, the external boundaries are only consideration in mesh gen-
eration operation and internal boundaries, such as cracks, voids, contact surfaces, etc., have no effect on mesh
configurations. This method has proper applications in problems with moving discontinuities, such as punch-
ing, phase changing, crack propagation, and shear banding.
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Fig. 1. Modeling of contact surface between powder and die in powder compaction simulation: (a) an axisymmetric shaped tip
component, (b) the FE mesh which conforms to the geometry of contact together with employed contact elements and (c) a uniform mesh
in which the circled nodes have additional degrees of freedom and enrichment functions.
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In order to introduce the concept of discontinuous enrichment, consider that I'. be a discontinuity surface
between the tool and powder in domain €, as shown in Fig. 1(a). We are interested in the construction of a
finite element approximation to the field # € Q which can be discontinuous along contact surface I'.. The tra-
ditional approach is to generate the mesh to conform to the line of contact surface as shown in Fig. 1(b), in
which the element edges align with I"., and implement the contact elements in the line of discontinuity surface
(Khoei and Lewis, 1998). While this strategy certainly creates a discontinuity in the approximation, it is cum-
bersome if the line I'. evolves in time, or if several different configurations for I'. are to be considered (Khoei
and Lewis, 1999). In this study, we intend to model the discontinuity along contact surface I'. with extrinsic
enrichment, in which the uniform mesh of Fig. 1(c) is capable of modeling the contact surface in # when the
circled nodes are enriched with functions which are discontinuous across I'..

The standard FE approximation can be enriched with additional functions by using the notion of partition
of unity (Melenk and Babuska, 1996). The enriched approximation in modeling of discontinuity I'. can be
expressed in following form:

u'(x) = ZNi(x)ui + ZN,(x)x//(x)aj for n; € ny and n; €n, (1)

The first term of above equation denotes the classical finite element approximation and the second term indi-
cates the enrichment function considered in X-FEM. In this equation, u; is the classical nodal displacement, a;
the nodal degrees of freedom corresponding to the enrichment functions, y(x) the enrichment function, and
N(x) the standard shape function. In Eq. (1), n7is the set of all nodal points of domain, and n, the set of nodes
of elements located on discontinuity, i.e.,

ne:{n_j:n_/enT7w/ﬂFc7éO} (2)

In the above equation, w; = supp(#,) is the support of the nodal shape function N/x), which consists of the
union of all elements with n; as one of its vertices, or in other words the union of elements in which N{(x)
is non-zero.

In this method, two approaches are simultaneously applied to the elements located on discontinuity; the
partition of unity method and the enrichment of displacement field. The partition of unity method is used to
discretize the intersected elements by partitioning the domain with some triangular sub-elements whose Gauss
points are used for integration of the domain of elements (Fig. 2a). The enrichment of displacement field is
applied to correct the standard displacement based approximation by incorporating discontinuous fields
through a partition of unity method (Fig. 2b). It must be noted that the enrichment varies from node to node
and many nodes require no enrichment, which is an application of the partition of unity concept. In X-FEM,
the diversity in types of problems requires proposing appropriate enrichment functions. Different techniques
may be used for the enrichment function; these functions are related to the type of discontinuity and its influ-
ences on the form of solution. These techniques are based on the signed distance function, branch function,
Heaviside jump function, level set function, etc.

The signed distance function is applicable to crack problem, which is discontinuous across the crack line
(Belytschko et al., 2001). The function can be viewed as an enrichment with a windowed step function, where
N(x) is the window function. The window function localizes the enrichment so that the discrete equations will
be sparse. For cracks which are not straight, a mapping is required to align the near-tip discontinuities with
the crack edges. In this case, a near-tip function, or branch function, can be constructed in terms of the distance
function, which enables the discontinuity to be curved or piecewise linear (Dolbow et al., 2001). This function
spans the near-tip asymptotic solution for a crack, and gives very good accuracy for these problems. The level
set method is a numerical scheme developed by Sethian (1996) for tracking the motion of interfaces. In this
technique, the interface is represented as the zero level set of a function of one higher dimension. This method,
which is used for predicting the geometry of boundaries, is distinguished as a good option for inhomogenous
fields and its application in enriching the domains which have discontinuity in strain field is considerable.
Recently, the technique of fast marching method, which was first introduced by Sethian (1999), was coupled
with X-FEM to model crack growth (Sukumar et al., 2003 and Chopp and Sukumar, 2003). The method com-
putes the crossing time map for a monotonically advancing front in an arbitrary number of spatial
dimensions.



5426 A.R. Khoei et al. | International Journal of Solids and Structures 43 (2006) 5421-5448

(a)

(b)

Fig. 2. The extended finite element mesh: (a) the sub-triangles associated with elements cut by contact surface, (b) partition of unity
enrichment for elements with the contact surface, (@) fully enriched nodes (set n,), (Q) partially enriched nodes (set n,), and (O) unenriched
nodes.

It must be noted that the partition of unity method must be applied together with the enrichment of dis-
placement field to those elements located on the discontinuity surface. The choice of enrichment functions
in displacement approximation is dependent on the conditions of problem. If the discontinuity is as a result
of different types of material properties, such as powder—punch interface, then the level set function is pro-
posed as an enrichment function—however, if the discontinuity is due to different displacement fields on either
sides of the discontinuity, such as contact surface, then the Heaviside function is appropriate. In what follows,
the implementation of the level set function in modeling the discontinuity due to different material properties
and the Heaviside function in simulation of powder-die contact surface are presented.

In order to model the discontinuity in inhomogeneity due to different material properties of powder and die
in two intersected parts, the level set method is used for the elements having discontinuity. The method is a
numerical technique for tracking moving interfaces (Sethian, 1996, 1999). A moving interface I'(¢) is formu-
lated by the level set function ¢, as

() ={xeR:o(x1) =0} (3)

in which the value of level set function is zero on the border. The sign of its value is negative in one side and
positive on the other side. The values of level set function present the distance from the border, i.e.,
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n

Fig. 3. Illustration of normal and tangential coordinates for a contact surface in the case of jump function H(x) = —1; x* is the closest
point to x on the contact surface.

¢(x) = min [lx — x"[sign((x — x")n) 4)

where x* is the point on the interface boundary which has the closest distance from the point x, and n is the
normal vector to the interface at point x*. These changes in the values of level set make an appropriate behav-
ior for the corrected shape functions. The new degrees of freedom a; corresponding to the level set enrichment
function are considered in Eq. (1) in order to attribute to the nodes that belong to the set of n,. The presence of
these new degrees of freedom improves the discontinuity due to different types of material properties in two
intersected parts of element. In order to improve the numerical computation in X-FEM, it is preferable to
have a uniform distribution of shape functions around the boundary of discontinuity. To this goal, a tech-
nique for smoothing the values of level set proposed by Sukumar et al. (2000) is applied here by employing
the nodes that belong to the elements in the neighbor of discontinuity elements, as shown in Fig. 2(b).

In order to model the discontinuities in displacement fields, the Heaviside enrichment function is imple-
mented in simulation of powder-die contact surface, in which the function H(x) takes the value of +1 in
one side of contact surface, and —1 on the other side, as

. >
H(x):{—i—i if (x .x jn =0 5)
—1 otherwise
in which the contact surface is considered to be a curve parameterized by the curvilinear coordinate s, as
shown in Fig. 3. It must be noted that the Heaviside function is a powerful and reliable tool in enriching
the domain with strong discontinuities, such as contact surface.

3. The X-FEM formulation

In this section, the governing equations of nonlinear elasto-plasticity is presented together with the weak
form and the discrete system for the X-FEM. Applying the level set enrichment function Y(¢(x)) in Eq.
(1), the X-FEM displacement approximation can be rewritten as

u(x) = STNiu + 3N (R(p(x))a; for n € ny and n, € n, (6)

Defining the enrichment function y(x) based on its nodal values as (x) = |>",N:(x)y,
ten as

u(x) = ZNi(x)ui + Z <N,»(x)

, Eq. (6) can be rewrit-

a,) for n; € ny and n; € n, (7)

ZNk(x)‘Pk
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The relationship between strain and displacement can be expressed by taking the derivative of displacement
field as

ON; ON; 0

“Za“zla ) 5

ZNk(x)lPk ZNk(x)lPk

in which the first term denotes the classical finite element approximation which is composed by the derivatives
of shape functions in whole domain and the second term presents the derivative of enriched shape functions

which is constructed in the domain of set ny. Thus, the well known strain matrix relating the increments of
strain and displacement can be written as

J

]aj (8)

s :
ON; 0 a(Nizk:Nkwk> 0
Ox
ON; 0
B:=| O B* = — (N )
i ay ’ i 0 ay (N, ;Nklpk > (9)
ON; ON; 3 3
L 0y  Ox _5 <N,-§k:Nklﬁk> &(Nizk:]vk‘//k>_
On substituting the trial function of Eq. (7) into the weak form of equilibrium equation of elasto-plasticity,
ie.,
/a:s(u)dQ:/budQ—i—/tudF (10)
Q Q r

the discrete system of equations can be obtained as Kd = f, where d is the vector of unknowns of u; and a; at
the nodal points, and K and f are the global stiffness matrix and external force vector, defined as

K¥ K
Kj=| o o f, = {ff}" 1

1

where

K/ = / E(Bf.‘)TDeP(Bf.)dQ (o, f = u,a)
(12)
f?= [ N}dQ+ [ N#dI' (¢ =u,a)
ol re
where DP is the elasto-plastic constitutive matrix. In Eq. (12), N7 = N, is for a finite element displacement
degree of freedom, and N7 = N for an enriched degree of freedom.

It must be noted that for the elements cut by the interface boundary, the standard Gauss quadrature points
are insufficient for numerical integration, and may not adequately integrate the discontinuous field. If the inte-
gration of the discontinuous enrichment is indistinguishable from that of a constant function, the system of
equations may be rank deficient. Thus, it is necessary to modify the element quadrature points to accurately
evaluate the contribution to the weak form for both sides of discontinuity. In what follows, we present the
modifications made to the numerical integration scheme for elements cut by a discontinuity surface.

The discrete weak form is normally constructed with a loop over all elements, as the domain is approxi-
mated by

e=[Je. (13)

where m is the number of elements and Q, is the element sub-domain. For the elements located on interface
boundary, an appropriate procedure is performed by dividing the elements into triangular sub-domains Q
with boundaries aligned with the discontinuity surface geometry, i.e.,
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0. - Usz (14)

where m; denotes the number of sub-polygons of the element. The Gauss points of sub-triangles are used for
numerical integration across the contact surface, as shown in Fig. 2. Different algorithms may be applied to
generate these sub-polygons, based on sub-triangles and sub-quadratics. In this study, sub-triangles are imple-
mented for numerical integration. It is essential to mention that these sub-polygons only generated for numer-
ical integration and no new degrees of freedom are added to system. In the construction of the matrix
equations, the element loop is replaced by a loop over the sub-triangles for those elements cut by the
discontinuity.

4. Modeling frictional contact with the X-FEM

Numerical simulation of frictional contact in FEM can be achieved by employing contact elements.
Although these elements have wide application in simulation of contact problems, the modeling of evolving
contact surfaces with the finite element method is cumbersome due to the need to update the mesh topology
to match the geometry of the contact surface, and implement the contact elements between two different
bodies. The extended finite element method alleviates much of the burden associated with mesh generation
by not requiring the finite element mesh to conform to contact surfaces, and in addition, provides a seamless
means to use higher-order elements or special finite elements without significant changes in the formulation.
Here, the plasticity formulation of X-FEM has been simultaneously applied with an iterative procedure, called
LATIN method (Ladeveze, 1998), to insert the nonlinear boundary conditions along the contact surface. Sim-
ilar algorithm was applied by Dolbow et al. (2001) in modeling crack growth, in which the nonlinear behavior
of frictional contact was separated from the linear governing equations.

Consider that I'. be a contact surface between the tool and powder in domain £, as shown in Fig. 1(a). The
interface I, is distinguished into two parts I') and I, in which I'. = I'” UT', and the normal vector to I';”
denoted by n. We also introduce the displacement and traction on each face of the contact surface by w',
ttonrl Tand w, t on I',. In order to obtain an appropriate form that is suitable for numerical treatment
of contact behavior, the weak form of equilibrium Eq. (10) can be rewritten as

/a:s(u)dQ:/budQ+/ tudF+/ twdl’ (15)
Q Q Iy c

in which the last term represents the concept of energy, dissipated in the relative motion of two sides of the
contact surface along each other, where

/t-wdF:/ t+-w+d1"—|—/ t -w dlr (16)
I, rf I

It is important that the displacement field of domain u and the displacement on contact surface w be kinemat-
ically admissible, i.e., u|. = w* and u|.- = w™. The interfacial constitutive law on the contact surface can be
expressed in terms of ‘the displacemént and traction (w,t) on both sides of the contact surface by
F(wt,w™,t7,t7) = 0, with & denoting the friction constitutive law that indicates the stress level at which rel-
ative slip motion occurs. The goal is to obtain the stress and displacement fields on both sides of contact sur-
face which satisfy the equilibrium and consistency conditions. In this study, the LATIN method is applied by
decomposing the governing equations into a set A which is related to the global system, and a set I of local
system which is related to contact problem. The sets A4 and I can be defined as follows:

A= {se R :06=DPsu) and F(6,x) =0 on Q} (17)
I={scR:Zw" ,w tt)=0onT,} (18)
where s = (u,0,w,t).

In order to obtain the value of s/, which is located at the intersection of the sets A and I, the iterative strat-
egy of LATIN method is applied at each increment of governing equations of global system within the time
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step (Zy, ,+1) in the following manner. The iteration begins with an initial value of sj in 4. The value of s{ can
be then obtained by satisfying the governing equation of set I. In the next step, the governing equations of set
A is preserved for obtaining the value of s{. This procedure is carried out until the convergence is obtained. In
this algorithm, the value of s?,| at iteration i + 1 can be calculated from s/ at iteration i in two steps; first s7' to
s/ and then, s} to 7| by satisfying the governing equations of set I and A, respectively. The iteration will be
stopped when the difference between s/ and s7,, is below a specified tolerance. It must be noted that going from
one set of equation to the other set requires having extra equations in order to achieve the fast convergence
(Dolbow et al., 2001).

Finally, in order to compute the total stiffness matrix, the integral term of contact behavior in the weak
form of Eq. (15) is incorporated into the discretized equations of global system. The stiffness matrix of global
system is therefore combined with the stiffness matrix due to contact problem, yielding a system of algebraic
equations defined as (K, + K;)d = f, with K4 denoting the stiffness matrix of global system and K; the stiffness
matrix due to contact behavior. The procedure for constructing the stiffness matrix K, is similar to that
explained in Section 3—however, the enrichment function of level set method is replaced by the Heaviside
function in order to approximate the displacement field of the elements located on contact surface. The pro-
cedure for construction of the stiffness matrix K; is carried out based on the one-dimensional integration of
related functions on the contact surface I'... In this case, the interface is partitioned into a set of one-dimen-
sional segments, which are similar to the two-dimensional sub-triangles used for the volume integral. The
numerical integration of K; is then performed using the Gauss quadrature points along each of one-
dimensional segments.

4.1. Friction constitutive model

The objective of the constitutive model of friction is to provide a theoretical description of motion at the
interface of bodies in contact. The plasticity theory of friction can be achieved by an analogy between plastic
and frictional phenomena. In order to formulate such a theory of friction several requirements have to be con-
sidered (Khoei and Nikbakht, 2005). These requirements, which are similar to the requirements considered in
the theory of elasto-plasticity, are as follows: stick (or adhesion) law, stick-slip law, wear and tear rule, slip
criterion, and slip rule.

Consider w™ and w' be the displacements on each face of the contact surface on I',, the relative displace-
ment between two surfaces can be defined by gn(x) = (w~ — w')n, with gy(x) denoting the gap between the
two bodies and n the normal vector to the interface I'Y. During the contact and sliding of the bodies, we define
pn and pr as the normal and tangential load acting on the point x, respectively. The contact conditions is
expressed in the standard Kuhn-Tucker form as

gy =0, py <0, pngy =0 (19)

where py =t mand pr=n®@ (t" ® n), in which the normal and tangential components must be in equilibrium
on both sides of contact surface. Consider that there is no gap between the two bodies in the sliding contact
problem, and the tangential displacement consists of stick and slip decompositions, which is in principle the
same as the decomposition of elastic and plastic behavior. Thus, the decomposition of the tangential displace-
ment at the contact surface can be expressed by wr = w$ + wh, with wr denoting the tangential part of the
displacement, i.e., wr= (I — n @ n)w.

In relation (19), the kinetic constraint of impenetrability of two bodies can be satisfied as well as the static
condition of compressive normal load. In order to resolve the resulting unilateral contact problem the penalty
method is used here, in which the method needs no additional variable as the impenetrability condition is
approximately satisfied. Therefore, the normal load py can be obtained from multiplication of the penalty fac-
tor ky and the displacement in the normal direction w. Similarly, the stick (or elastic) component of the tan-
gential load can be obtained by multiplying the penalty factor k+ and elastic part of the displacement in the
tangential direction wi. The penalty factors ky and kr can be considered as being the normal stiffness constant
and shear stiffness constant, respectively. Constitutive laws for the contact loads can now be summarized by
py = kyw® and pr = k;w°, with ky and k; denoting the normal and tangential parts of the elastic modulus
tensor defined as
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ky = —ky(n®n) (20)
Ky = —k7(I—n®n) (21)

In order to perform the additive decomposition of displacement into adherence and slip, a slip criterion
must be introduced. To this end the slip surface & is postulated in the contact stress space on which slip will
occur. The slip criterion is expressed based on the Coulomb law as
=0 slip (or grap)

(22)

F = —Hly
Iprll '“./HPN”{<0 adherence

where piris the friction coefficient of contact surface. It must be noted that the associated flow rule of slip cri-
terion (22) would generate a normal force. In order to avoid the slave body separation from the contacting
surface, a non-associated flow rule is typically adopted (Curnier, 1984). Hence, the slip potential Z is intro-
duced as a cylinder with radius ||P7]| for isotropic frictional contact and the slip direction is defined as the
outward normal to the slip potential Z. Consequently, the plastic part of the tangential displacement w}.
can be defined by the definition of the slip rule as

wh =3 2, P (23)

opr el

where /4 is a constant multiplier. The constitutive model for the contact problem with a nonlinear frictional
evolution law is conveniently described by Eqgs. (19)—(23) implemented into the X-FEM formulation.

5. Cap plasticity model

A generalized cap model, based on classical plasticity theory, originally proposed by DiMaggio and Sandler
(1971) and Sandler and Baron (1979), allows the control of dilatancy by means of a hardening cap that inter-
sects a fixed failure envelope in a non-smooth fashion. A commonly accepted interpretation of this model,
given by Simo et al. (1988) and Hofstetter et al. (1993), assumes a one-to-one correspondence between the
hardening of the cap and the plastic volume change. However, if a one-to-one hardening law is postulated,
softening response may occur when the stress point is located at the compressive corner region. Motivated
by this softening behavior, Sandler and Rubin (1979) proposed a modified hardening law which prevents soft-
ening response. The generalized cap models have also been expanded by Nelson and Baladi (1977) to include
rate effects, and anisotropic behavior within the yield surface and visco-plastic behavior during yielding.

The cap models are based on the concept of continuous yielding of materials, but they are expressed in
terms of a three-dimensional state of stress and are formulated on the basis of consistent mechanics principles
(Khoei et al., 2004). The yield surface of this elasto-plastic model has a moving cap, intersecting the hydro-
static loading line, whose position is a function of plastic volumetric strain (Fig. 4). The main features of
the cap model include a failure surface and an elliptical yield cap which closes the open space between the
failure surface and the hydrostatic axis. The cap surface expands in the stress space according to a specified
hardening rule. The functional forms for these surfaces are

A
‘]2D

Fixed Yield Surface( f,)

Tension
Cutoff (f,)

T L X J

Fig. 4. The double-surface cap plasticity model.
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fi =T =01+ e M 2 =0 24
=R+ () — L)Y} =R =0 (25)
fi=J1—T=0 (26)

where J; and J>p are the first invariant of effective stress tensor and second invariant of deviatoric effective
stress tensor, respectively. o, f8, y and 6 are the parameters of fixed yield surface f;, which controls the devi-
atoric stress limits. The fixed yield surface f; is defined by an exponential function and in reality is consist
of two different Drucker—Prager yield surfaces. The cap yield surface f is an elliptical function, with R denot-
ing the ratio of two elliptical cap’s diameters. The function f3 indicates the tension cut-off zone, with 7" denot-
ing the material’s tension limit.

The hardening rule for moving cap is related to the volumetric plastic strain & as

Xk)=X()=—In(1-2)+X 27

) =x@) =5 n (1= ) + @27)
where D and W are material parameters and X, refers to the position of initial cap surface. The plastic hard-
ening/softening modulus H is zero for f; and f5. Fig. 5 shows how the cap yield surface grows with densifica-

tion due to increase of the volumetric plastic strain. The 3D representation of the double-surface plasticity is
shown in Fig. 6 for different values of volumetric plastic strain.

Increase in

Volumetric Plastic Strain _——
175 l or Relative Density ‘i

1
1000

Fig. 5. The expansion of moving cap surface with increasing the volumetric plastic strain, or relative density.

Fig. 6. 3D representation of cap plasticity model.
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5.1. Computational algorithm of cap model

The cap plasticity model presented here is based on the concept of generalized plasticity theory in which the
elasto-plastic constitutive matrix is defined by

D°nyn;D°

D — D¢ —
H + n;DenQ

(28)

where D° is the elastic constitutive matrix (de® = D°de), H is the plastic hardening/softening modulus, nyis the
normal vector to yield surface (0F/06) and ny is the normal vector to plastic potential surface (0Q/0s). In
order to compute the elasto-plastic constitutive matrix, we need to calculate the plastic hardening/softening
modulus and flow direction vector (Khoei, 2005).

ENCAYEAS
i) &) )
oOF A, 3(Jap) " oJ3p
o % T 0% (30)

where C; = 0F/0J,, C> = 0F/d(J>p)"? and C; = 0F/0J3p.
For the fixed yield surface, the values of constants C;, C, and Cs in the case of associated flow rule are as
follows:

Ci=—0— pye ¥, C, =1, Cy=0 (31)

In above relations, the value of C; is less than zero. It means that the normal vector to the plastic potential
surface is in opposite direction of J;-axis. On the other hand, the associated flow rule results in dilation of
material (increase of volume) and the stress state lays on the fixed yield surface at the ultimate shear stress.
As the ultimate shear stress shows no volume changes in material, the non-associated flow rule can be there-
fore utilized, in which the normal vector to the plastic potential surface is perpendicular to Jj-axis. Thus, the
values of constants Cj, C, and C; for plastic flow vector ny are

Ci=0, GCy=1, C;=0 (32)

In order to calculate the values of constants C;, C, and C; and parameter of hardening/softening modulus
H for moving cap surface, function £ in Eq. (25) is rewritten as

\/RszD + (U1 —L’—Rb=0 (33)
Thus, the values of constants C; in flow direction vector are

Ji—L c R*\/Jop
1= ) 2 =
\/R2J2D + (i -L) \/RszD + (i -L)

c . C3=0 (34)

The plastic hardening/softening modulus can be determined by Eq. (29). Considering the hardening parameter
K equal to &P, it leads to

9 oeP\ " 0

where

f, 0 0L  f; 0b
el oL o:f ' 0b Ocf
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where
ofr
L 2(Jy —L) (37)
ofr )
b 2R°b (38)

From the definition of moving cap surface, we have L=X— Rb, b=0L —ye "+« and then,
L(1 + RO) — Rye "L + Ro = X. By taking derivative from these relations, we will obtain

o _ 1 1 (39)
del  D(W — &) 1+ RO+ RByebL

ob 1 /0X OL

"R (a‘a) (40)

Finally, the values of constants C;, C, and C; for the tension cut-off yield surface can be simply calculated
according to Eq. (26) as

Ci=-10, C=0, C3=0 (41)

and the plastic hardening/softening modulus for tension cut-off surface is assumed to be zero.
5.2. Parameter determination of cap plasticity

In order to evaluate the parameters of double-surface plasticity, the experimental results of confining pres-
sure and triaxial tests are necessary for parameter determination of the fixed, moving cap and tension cut-off
yield surfaces. The fixed yield surface has an exponential form which is composed of an initial portion of the
Drucker—Prager envelope joined smoothly to the subsequent Drucker—Prager line, as demonstrated in
Fig. 7(a). The slope of the first Drucker—Prager line, i.e., line I, is greater than the slope of the second
Drucker—Prager line, i.e., line II. The logic for adopting the second Drucker—Prager surface in higher stresses
is based on the observation that at higher stresses the material behave like a liquid. This was adopted
particularly to simulate behavior of cohesionless materials subjected to high stresses.

. Drucker — Prager Line I1
Drucker — Prager Line I

FixedYield Surface(f,)
fi=AJw —0) + e —a=0

(a) Ji

. Drucker — Prager Line I1
Drucker — Prager Line I

+ ultimate stress states
in triaxial tests

(a-7)1

L

(b) J,

Fig. 7. The fixed yield surface of double-surface plasticity: (a) the model description and (b) the parameter determination.
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In order to determine the parameters of fixed yield surface f1, the results of triaxial tests are necessary at the
ultimate shear stresses. These ultimate points are presented in Fig. 7(b) in J; — v/J,p plane. Considering the
state of stress when J; is equal to zero and substituting J; = 0 in Eq. (24) lead to

fi=VIp+y—a=0 (42)

It means that the intersection of the fixed yield surface, or the Drucker—Prager line I, with \/J,p-axis is o« — 7.
As f is assumed to be a positive quantity and compression is taken as positive, the quantity of e *1 will be
very small for large value of J;. Thus, it leads to

Sr=VJIp—0J —a=0 (43)

The above equation represents the Drucker—Prager yield criterion, which is shown by line II in Fig. 7. As can
be observed the slope of this line is 0 and its intersection with \/J,p-axis is o. The parameter f in fixed yield
surface can be evaluated using an arbitrary point on transition curve, as shown in Fig. 7.

In order to determine the parameters of moving cap surface f>, we need to investigate the plastic deforma-
tions under compression. The increase of compression causes the increase of plastic volumetric strain and
hence, the expansion of cap surface in Jy-axis. The values of D, W and X, are computed by using Eq. (27).
The value of Xj is zero when there is no significant initial yielding cap. For granular and porous materials,
there is no significant initial stress and X, = 0. The values of D and W are obtained from the confining pres-
sure, or hydrostatic pressure test. From these tests, the value of X obtained by Eq. (27) is equal to J;. The
elastic volumetric strain ¢ is evaluated from the variation of J; with ¢, on unloading portion curve obtained
from the hydrostatic pressure test. The plastic volumetric strains &? can be expressed in terms of total and elas-
tic components of strain as

=g —¢ (44)

The values of D and W are estimated using the variation of J; and X with &°. The parameter R can be deter-
mined using the confining pressure and a set of triaxial tests. For the cap yield surface with a given value of X
the shape of surface can be specified in J, — /J>p plane for the same values of plastic volumetric strain from
different hydrostatic and triaxial tests.

6. Numerical simulation results
6.1. Tablet pressing process

The first example demonstrates the performance of the X-FEM technique in compaction simulation of tab-
let pressing process. The geometry is used by Lewis and Khoei (2001) to show the applicability of the large FE
formulation in this practical example. The material parameters in the constitutive model are calibrated for a
sample of metal powder by fitting the model to reproduce data from isostatic compaction and triaxial tests.
The experimental data are gained from a set of compaction experiments on an iron-based powder performed
by Doremus et al. (1995). The material parameters for simulation of powder are given in Table 1. The die wall
friction is simulated using the Coulomb friction coefficient u = 0.08. A shaped tablet is compacted by simul-
taneous action of top and bottom punches. The geometry, boundary conditions and finite element mesh are
shown in Fig. 8(a). The component is modeled by an axisymmetric representation, as illustrated in this figure.

Table 1

The material model parameters for the cap plasticity

Fixed yield surface parameters Cap parameters Tension cut-off
o =225 MPa R=1.75 T=-0.3 MPa
$=0.002 MPa™! D =0.005 MPa

y =200 MPa W=0.34

0 =0.008 Xo=1MPa
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Fig. 8. An axisymmetric shaped tablet component: (a) finite element modeling, geometry and boundary condition and (b) final deformed
mesh.
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Fig. 9. An axisymmetric shaped tablet component: (a) extended finite element mesh and (b) final deformed mesh.
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In FEM mesh, the finite elements are combined with the interface elements along the contact surface. The
deformed FE mesh at final stage of compaction is plotted in Fig. 8(b).

In this example, the extended finite element approach is employed to simulate both the highly nonlinear
behavior of powder and the contact friction behavior between die and powder. If the discontinuity is as a
result of different material properties, then the level set function is proposed as an enrichment function—how-
ever, if the discontinuity is due to different displacement fields on either sides of the discontinuity, then the
Heaviside function is used. In the X-FEM analysis, the contact friction simulation between die and powder,
which are sliding relative to each other is carried out using an iterative procedure of LATIN method. The
stick—slip motion is characterized by a periodic switching between sticking and slipping. For those elements
which are intersected by the contact surface, the concept of the partition of unity is used to generate the
sub-triangles. The Gauss points of sub-triangles are then employed to evaluate the tangent stiffness matrix.
In Fig. 9(a), the extended finite element mesh is presented along with the sub-elements used for the partition
of unity method. Also plotted in Fig. 9(b) is the deformed mesh at final stage of compaction using X-FEM
analysis.

The relative density contours at the four stages of compaction are plotted in Fig. 10 using X-FEM tech-
nique. From the contour of final stage of compaction, it can be observed that the density in the right hand
region of tablet is greater than other parts while regions with low density appear between high-density regions.
In Fig. 11, the normal stress ¢, contours are presented at the four stages of compaction using X-FEM
technique. In order to compare the results between two different techniques, the compaction simulation is

0512952
0508493

0615431
o 0607053
- 0.588673
0.520301
0581924
0573543
0565171
055794
05489417
0.590041
0531664

0.4e5201
0.4317H
0477282
047282
0.462362

1. 149956

0.869791

] 0.8c0278 :Egﬁg?

i 0.842765 :
0.819262 1.mz7g
0.795739 1.03337
0772225 1.00405
0745712

Bk
0.701665 ’
0873173 0218178
0.65466 0.8239256

Fig. 10. A shaped tablet component; the density distribution at four stages of compaction using X-FEM technique.
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Fig. 11. A shaped tablet component; the normal stress contours at four stages of compaction using X-FEM technique.

performed using a finite element analysis illustrated in Fig. 8. The contours of density distribution and normal
stress at the final stage of compaction are shown in Fig. 12. A good agreement can be seen between X-FEM
and FEM techniques. The compaction simulation of tablet pressing is also performed by the X-FEM tech-
nique considering sleeve, punches and powder, as shown in Fig. 13. This figure presents the final deformed
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Fig. 12. Modeling of a shaped tablet component using FEM analysis: (a) the final density distribution and (b) the final normal stress
contour.
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Fig. 13. A shaped tablet component; the final deformed mesh using X-FEM analysis.

mesh for the proposed simulation. It clearly shows how the present X-FEM technique is capable to simulate
the plasticity forming of powder compaction with contact friction.

6.2. Compaction of rotational flanged component

The next example refers to the compaction of a flanged component, which is modeled by an axisymmetric
representation, as illustrated in Fig. 14(a). Also plotted in this figure are the initial geometry and finite element
mesh of component. Numerical simulation is performed using 2D structured mesh of 100 bilinear elements.
Material parameters of double-surface plasticity are similar to the first example. The numerical results of finite
element simulation were reported by Khoei and Lewis (1999) mesh and Perez-Foguet et al. (2001) and used for
comparative purpose. In order to avoid the mesh distortion, as demonstrated by Khoei and Lewis (1999) and
Perez-Foguet et al. (2001), simultaneous movements of the top and bottom punches have been applied (the top
punch movement of 6.06 mm and the bottom punch movement of 7.7 mm). The friction of powder with
punches and die wall are simulated with a Coulomb friction coefficient ¢ = 0.08.

A rotational flanged component was simulated using a uniform extended finite element mesh of four-noded
elements, as shown in Fig. 14(b). In this figure, the mesh is not conformed to the geometry of component and
it is substituted by partitioning the domain with some triangular sub-elements. In order to model the discon-
tinuity due to different material properties of powder and punch, the level set method is used as an enrichment
function for the elements having discontinuity. To model the discontinuity due to different displacement fields,
the Heaviside enrichment function is implemented in simulation of powder-die contact surface. Implementa-
tion of these enrichment functions in conjunction with the iterative process of satisfying local and global gov-
erning equations in LATIN procedure and recruiting one-dimensional sub-elements in numerical calculations
is the procedure of solving this example. Fig. 15 presents the deformed meshes at the half and final stages of
compaction using X-FEM technique. The relative density distribution at the half and final movements of
punches is presented in Fig. 16. The distribution of relative density is almost homogeneous with difference less
than 11% at the final stage of compaction. The higher value of relative density can be seen in bottom corners
of component and the lower value in right bottom corner of flange. The relative density distributions are in
good agreement with those reported by Perez-Foguet et al. (2001) in Fig. 17. A comparison between the
top and bottom punch forces versus vertical displacements obtained by X-FEM and those given by Khoei
and Lewis (1999) is illustrated in Fig. 18. It shows a good agreement with finite element analysis.
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6.3. Compaction of shaped tip component

The last example refers to the compaction process of a highway-engineering tip, whose axisymmetric geom-
etry is shown in Fig. 1. This example has been experimentally investigated by Haggblad and Oldenburg (1994)
and numerically simulated by Khoei and Lewis (1998). The component is composed of discontinuities in
geometry which cause some problems in the standard finite element analysis. These difficulties are due to mesh
adaption, which is time consuming for the proposed complicated geometry. To overcome these inconve-
niences, the extended finite element method is employed to remove the mesh conforming to the boundary con-
ditions. In order to illustrate a comparison between the density distribution obtained by the X-FEM model
and those obtained using FEM analysis by Khoei and Lewis (1998), the simulation has been performed using
the remaining pressing distance from above of 3.0 mm and an under pressing of 1.5 mm. The initial relative
density at the start of simulation is 0.25. Material parameters of cap plasticity model chosen for the simulation
of powder are given in Table 1. The die wall friction is simulated using the Coulomb friction coefficient
u=0.08.

In traditional approach, the finite element formulation is characterized by the use of interface elements in
which the plasticity theory of friction is incorporated to simulate sliding resistance at the powder—tool
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Fig. 14. A rotational flanged component: (a) geometry, boundary condition and finite element mesh and (b) extended finite element mesh.
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interface (Khoei and Lewis, 1998). Fig. 19(a) presents the finite element mesh of a shaped tip component using
the eight-noded quadrilateral elements. In the present study, we illustrate the performance of X-FEM
technique in modeling powder-die friction and highly nonlinear behavior of powder. In Fig. 19(b), a uniform
extended finite element mesh of quadratic elements is presented, in which the distinction between punch, sleeve
and powder is determined using triangular sub-elements. The deformed FE meshes at the half and final stages
of compaction are plotted in Fig. 20. Also plotted in Fig. 21 are the deformed extended FE meshes at the half
and final stages of compaction. The relative density distribution at the half and final movements of punches is
presented in Fig. 22 using X-FEM technique. The density distributions are in good agreement with those
obtained by finite element simulation in Fig. 23. In order to assess the accuracy of the use of X-FEM technique
in modeling the complex geometry of tip component, we compare the stress distribution of compacted com-
ponent using finite element formulation to that obtained by the new technique. Fig. 24(a) presents the normal
stress g,, contour at final stage of compaction using X-FEM technique. This result can be compared with that
obtained by FE simulation in Fig. 24(b). Fig. 25 demonstrates a comparison of the variation with time of the
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Fig. 15. A rotational flanged component; the deformed meshes at the half and final stages of compaction using X-FEM analysis.
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Fig. 16. A rotational flanged component; the density distribution at the half and final stages of compaction using X-FEM analysis.
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Fig. 17. A rotational flanged component; the density distribution at the half and final stages of compaction using FEM analysis (Perez-
Foguet et al., 2001).

relative densities at three different nodes obtained by X-FEM technique and those computed by FEM analysis.
A good agreement can be observed between two different techniques.

7. Conclusion

In the present paper, the extended finite element method was presented in pressure-sensitive plasticity of
powder compaction considering frictional contact. The technique was applied by employing enrichment func-
tions to approximate the displacement field of the elements located on the interface. The level set function was
used for enriching the discontinuities due to different material properties and the Heaviside enrichment func-
tion was implemented in simulation of powder-die contact surface. The process was carried out by partitioning
the domain with some triangular sub-elements whose Gauss points were used for integration of the domain of
the elements. The double-surface cap plasticity model was employed within the X-FEM framework to capture
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Fig. 18. The top and bottom punch reaction forces at different vertical displacements for a flanged component; a comparison between
FEM and X-FEM analysis.
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Fig. 19. A shaped tip component: (a) finite element mesh and (b) extended finite element mesh.

the response of initially loose metal powders to complex deformation histories encountered in the compaction
process of powder. The plasticity model includes a failure surface and an elliptical cap, which closes the open
space between the failure surface and hydrostatic axis. A general algorithm for the cap plasticity from the
viewpoint of efficient numerical modeling was presented. The constitutive elasto-plastic matrix and its compo-
nents were derived, and the procedure for determination of powder parameters was described.
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Fig. 20. A shaped tip component; the deformed meshes at the half and final stages of compaction using FEM analysis.
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Fig. 21. A shaped tip component; the deformed meshes at the half and final stages of compaction using X-FEM analysis.
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Fig. 22. A shaped tip component; the density distribution at the half and final stages of compaction using X-FEM analysis.
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Fig. 23. A shaped tip component; the density distribution at the half and final stages of compaction using FEM analysis.

The plasticity formulation of X-FEM was simultaneously applied with the iterative procedure of LATIN
method to insert the nonlinear boundary conditions along the contact surface. The frictional behavior of con-
tact between two bodies was modeled by using the X-FEM technique and applying the Heaviside enrichment
function. For the elements located on contact surface, an appropriate procedure was performed by dividing
the elements into sub-triangles. The implementation of X-FEM technique was presented in an incremental
manner and the role of sub-elements in simulation of contact treatment was demonstrated. Finally, the appli-
cability of the proposed model was demonstrated through several numerical examples with special reference to
plasticity forming of powder compaction. The numerical schemes were examined for efficiency in the modeling
of a tablet pressing process, the compaction of a rotational flanged component, and compaction forming of a
shaped tip component. The simulation of the deformation was shown as well as the distribution of relative
densities and stresses using both X-FEM and FEM techniques. A good agreement was achieved between
two different techniques. The results clearly indicated that the strategy of adaptive remeshing in powder com-
paction simulation which consumes high expenses of capacity and time, can be replaced by a new technique
based on extended finite element method, which makes it possible to simulate the powder forming problems
efficiently and accurately.
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Fig. 24. A shaped tip component; the normal stress contours at the final stage of compaction: (a) X-FEM analysis and (b) FEM analysis.
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Fig. 25. The variation of relative density with time at different nodes for a shaped tip component; a comparison between FEM and
X-FEM analysis.
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